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Preface

Following an initial phase of work in which a simulation of eddy current corrosion
detection for idealized structures was developed, this report covers Phase II of the
project in which the objective is refine the numerical model to simulate inspections
taking into account complex structural features found on aircraft.

In the foundation phase of the work, the main objective was to produce a mea-
surement model for basic layered structures of infinite transverse extent containing
local, regular or irregular flaws representing material loss due to corrosion. The
model determines the magnetic field at any point above the metal structure and can
therefore predict measurements made by giant magneto resistive (GMR) sensors or
Hall devices. The output of the model was validated by comparisons with experi-
mental measurements of probe impedance and sensor signals due to material loss in
conducting plates. The objectives of the first phase were achieved. In addition, a
study was made of a specific array probe concept based on the racetrack coil. The
coil shape is similar in plan view to that of a running track with semi-circular bends
connected by straight sections. The work on the racetrack coils is described in an
article submitted to Journal of Applied Physics and is reproduced in this report.
Also in the foundation phase, initial steps were taken to investigate the effectiveness
of sensor array probes for the detection of roughness on hidden surfaces.

Eddy current measurements on aircraft give large indications due to fasteners and
other structural features such as the edge of a plate in a lap joint. It is often the case
that flaw detection is hampered because the effects of normal structure masks the
signal due to the defect. Because of their significance in the detection and evaluation
of flaws, the simulation has been extended to take account of the two basic structural
features, fasteners and lap joints. In order to produce a reliable simulation code for
this task, a new numerical scheme has been developed in partnership with Dr’s
Guglielmo Rubinacci and Antonello Tamburrino from the University of Cassino, in
Italy.a

This partnership enable us to build on our combined experience of two approaches
to the design of numerical code. The Cassino group has been prominent in the use
of edge elements techniques and Dr John Bowler at CNDE has developed numerical
techniques based on dyadic Green’s function formulations. Features of these two
approaches have been forged together to produce a new formulation with the aim
exploiting the advantages of each.

In parallel with the design of a new numerical scheme, experiments have been car-
ried out to validate model predictions. The measurements are made using probes
consisting of a calibrated Hall sensor located on the axis of a circular drive coil.
Although this is not an array probe, it has the advantage that it can be well charac-
terized for modelling and code validation purposes. The aim of the validation work
is to check that the simulation predicts accurate results for probe signals due to an
isolated fastener and an elementary lap joint.

aCassino is known for the famous World War II battle of Monte Cassino which preceded the fall
of Rome.

v



Summary

The central task of Phase II is to reconfigure the numerical scheme
using edge elements. The motivation for this is that the array probe
simulation is then based on an approach that is more reliable and efficient
than the previous method based on traditional volume elements. With
an improved algorithm, calculation of the electromagnetic field in such
structure as a fastener or a lap joint can be performed faster because
the underlying computational engine uses as few unknown as possible
and is more reliable because it is constructed in such a way as to avoid
spurious modes.

In fact the numerical approach that represents the field in terms of edge
elements, was develop over the last decade to overcome the problem
of spurious solutions. The group at Cassino, who participated in the
present project, were at the forefront of this effort and we are fortunate
that they could partner with CNDE to create a computational scheme
that, when fully developed, will be at the forefront of modern numerical
techniques.

Due to delays in finalizing the agreement between Iowa State University
and Cassino, the work on the new numerical formulation was not com-
pleted until August which left little time for coding. However, Vipul
Katyal has work hard on the prototype of the new code at ISU, and
initial tests for bugs accuracy and performance have been carried out.
Further work is needed before the code is validated and can be used for
routine calculations.

Improvement in the experimental methods for validation have been made
by using a Stanford lock-in analyzer for magnetic sensors measurements.
New probes have been built for the Phase II validation work with an
improve signal to noise performance. Because the measuring systems has
been upgraded, new measurements have been performed on specimens
manufactured in the first year of this project and some new test pieces
added.

This report is divided into a series of articles beginning with a summary
of some numerical and experimental results. This is followed by a brief
account of a proposed imaging method for assessing material loss and
Article 3 is a copy of a paper on the racetrack coil submitted to Jour-
nal of Applied Physics. In addition we have included a technical review
of dyadic Green’s functions for layered structures, Article 4, which was
written to coordinate theoretical developments at Cassino and ISU. Fi-
nally we include a comprehensive report from Rubinacci and Taburrino
giving the edge element theory and an outline of the new numerical
formulation.

vi



Numerical and Experimental Results 1

Article 1

Simulation of Eddy Current Array Probes: Predic-
tions and Measurements

1.1 Introduction

In this project we have developed a computer simulation of eddy-current inspection of lay-
ered structures using probes containing giant magneto-resistive (GMR) or other solid state
sensors for detecting material loss and surface roughness due to corrosion. Experiments
have been performed to validate the simulation by comparing predictions of the magnetic
field with experimental measurements performed using calibrated Hall devices. The field
calculation treats the sensors as independent and therefore only requires validation using
single sensor probes.
Conventional driver pick-up eddy current probes use an induction coil to induce current

in the part and a pick-up coil to sense perturbation in the field due to flaws. Having a
magnetic field sensor, such as a magneto-resistor (MR) or Hall device, instead of the pick-
up coil means that the sensitivity of the field measurement is maintained at low frequency
and the spatial resolution is high because the field sensitive area in the sensor is usually
less than a millimeter across. There may be more intrinsic noise generated by a solid state
sensor than by a pick-up coil but intrinsic noise is negligible compared with extrinsic noise
due to surface roughness, material variations, scanning irregularities and so on. The main
benefit of solid state sensors is the low frequency sensitivity leading to improved detection
of subsurface flaws.
In this article, numerical predictions of magnetic field sensor measurements are sum-

marized and calculations are compared with experimental measurements to validate the
simulations. The conclusion reviews the need to quantify corrosion damage using array
probe data. Specifically through assessment of material loss and the measurement of sur-
face roughness. This implies that new inversion tools are needed. In addition, it is evident
that the images of corrosion, do not necessarily match up to the shape of the corroded area.
Hence there is a need for image processing tools to improve the visualization of damaged
regions. Article 2 makes a start on addressing this issue by showing how a corroded region
may be imaged quantitatively using traditional signal processing methods. In this article,
a brief report is given of some specific numerical results and validation experiments for loss
regions, holes, fasteners and lap joints.

1.2 Numerical Predictions and Experimental Results

Experiments have been performed using probes consisting of a circular coil and a Hall sensor
located on the coil axis, Figure 1. The sensor measures the magnetic field component in the
axial direction, perpendicular to the surface of the conductor. Two types of sensor types
are used in the probes. One is a Honeywell silicon device, 634SS2, in a dual in-line plastic
package which contains a preamplifier. The other, made by Asahi Kasai [1], an HW108A,
has a indium antinomide (InSb) sensor [2] which is more effective that silicon due to its
high carrier mobility but the package does not contain a preamplifier. Because of its small
size, see Figure 2, the Asahi Kasai seems to be more suitable for the manufacture of an
array by using off-the-shelf components. Results for the HW-108A will be given in future
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Figure 1: Coil and axially mounted magnetic field sensors.

h
c

2a

2b

h

z
z

Figure 2: Probe cross section showing key probe parameters.

reports. Here we focus on the measurements taken with the Honeywell device, which has
been in production for since the mid eighties and, incidently, is used in the probes for the
Nortec Eddyscan.

TABLE 1. Probe Parameters

Probe P1 P2
Coil O/D 2a (mm) 23.34 28.29
Coil I/D 2b (mm) 7.86 12.6

Axial length h (mm) 5.0 5.0
Number of turns N 1760 1750
Coil lift-off zc (mm) 0.55 0.55
Resistance (Ohms) 128.1 166.7
Hall sensor type HW-108A 634SS2
Manufacturer Asahi Kasai Honeywell

Sensor width (mm) 1.3 5.3
Sensor length(mm) 2.1 5.3

Sensor lift-off zH (mm) 0.1 0.1

Hall sensors are used here for probe validation for several reasons, the two main ones
being that the sensor is linear and the region of sensitivity can be can be precisely located at
the Hall slice. In a GMR for instance, the sensitive region extends to the flux concentrator
to an extent that is difficult to quantify.
Precise ac signal measurements are often plagued by spurious inductive pick-up but in

the case of the Asahi Kasai sensor, the bias current to the Hall sensor can be reversed thus
inverting the phase of the Hall signal whereas inductive pick-up will retain the same phase
following the bias reversal. By subtracting the signals measured with forward and reverse
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Figure 3: Asahi Kasai magnetic field sensor. Dimensions are given in millimeters.

sensor current, the result is largely independent of inductive pick-up signals.

1.2.1 Calibration Test

Two precision probes, whose parameters are given in Table 1, have been made and charac-
terized following a procedure given in Appendix A. The characterization ensures that the
probe performance is in accordance with the assumptions of the simulation and that the
sensors is calibrated.
In the characterization procedure, a test is carried out to ensures that the value adopted

for the coil probe liftoff yields predictions of coil impedance and its variation with frequency
that are consistent with measurements made with the probe on a homogeneous copper slab
(See Appendix A for these results). An additional test is performed to ensures that the
value adopted for the Hall probe liftoff yields theoretical predictions of the magnetic field
variation with frequency at the sensor site that are consistent with experimental field
measurements for a probe on the same unflawed copper slab.
In this latter test, the axial magnetic field at the sensor has been predicted for a

probe on a copper half-space and compared with calibrated measurements made with the
probe an a thick copper plate. One assumes that, because the theory is fairly basic,
the theoretical predictions are correct. Then the experimental data is examined to see if
the calibration is accurate and the measurement system is functioning correctly without
introducing spurious effects. The results of this comparison, Figure 4, show that the
experimental field measurements and predictions agree to with 4% over the operating
frequency range of the probe.

1.2.2 Square recess

The basic test case for the determination of material loss is a square recess in the bottom
surface of a aluminum plate. A comparison between theory and experiment for this case
was carried out in Phase I and gave reasonable results. However there was a tendency for
the model to overestimate the magnitude experimental field measurements. With the aim
of seeking improved agreement between theory and experiment, new data was obtained on
the square recess specimen using a new probe and an improved calibration procedure. In
addition, the analysis of the field predictions was reviewed and modified.
The recess is 25.45 mm square in the lower face a test piece 4.85 mm thick. The

recess was 3 mm deep which means that the material loss is detected through 1.85 mm
of aluminum. Phase and amplitude measurements of the magnetic field at the site of the
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Figure 4: Variation of Hall probe field measurement with the probe on a uniform (i.e.
unflawed) copper plate as a function of frequency, comparison of measurements, (circles)
with theory, (solid line).

axial sensor were carried out at 2500 Hz. The predicted amplitude and phase of the signal
as a function of position for probe P3 (Table 1) is shown in Figure 5 together with the
measurements. Note that the noise in the signal is hardly discernable on the graphs.
The predictions are somewhat dependent on the number of volume cells used, although,

with a sufficient number the results is stable. With a 12x12x1 array of volume elements
the simulation code, taking 5 minutes to run on a 1.5GHz PC, is in good agreement with
experiment both for the amplitude and the phase data. The over-prediction error in the
amplitude has been reduced by improving the calculation and the calibration precision.
However, in view of the accuracy of the prediction on an unflawed plate, which is within
4%, we aim in the future to reduce the discrepancy for flaws to around 5%.
The phase discrepancy for the recess calculation is about 10 degrees. This is not

unreasonable in view of the fact the phase can change markedly with the depth of the
subsurface flaw or with frequency, as shown in Figure 6. However an effort will be made
in the future to reduce the phase discrepancy further.

1.2.3 Holes and fasteners

One of the aims of the current project is to predict signals due to structural features such
as holes, fasteners and lap joints and then perform calculations involving these features in
the presence of material loss due to corrosion. Work on the combined problem has not yet
been completed but experiments on holes, fasteners and lap joints have been performed.
Experimental measurements of the magnetic field due to circular holes in an aluminum
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Figure 5: Magnetic field measurements of the signals due to a square recess at a frequency
of 2.5kHz using probe P3.

plate, 4.8 mm thick, is shown in Figure 7. These measurements will be compared with
theoretical predictions in the future. They were made in order create a stepping stone
towards the problem of computing and validating the response for a fastener in a plate,
Figure 8. However, time permitted an examination of the field predictions for a fastener
only, Figure 8.
The calculations were performed by defining a region whose conductivity differed from

that of the host aluminum plate. Because it proved difficult to measure the conductivity of
the fastener, results were calculated using a number of different fastener conductivities and
the best results chosen, Figure 9. This provides a test of the predicted shape rather than
magnitude since the latter was adjust through changes of fastener conductivity to give the
best fit.

1.2.4 Lap joint

A basic lap joint structure, Figure 10 was used to simulate the P3 probe signal at 500Hz
and 2500 Hz as shown in Figure 11. These results show firstly that the signal has a
strong frequency dependance and secondly that the higher frequency signal gives a sharper
edge response and therefore may be said to provide a better resolution of the underlying
structure.
A comparison between theoretical predictions of the simulation and measurements is

shown in Figure 12. The magnitude of the predictions are within about 15% of the mea-
surements. There is a small but significant phase error and some detailed features of the
measurements do not appear in the theoretical predictions. This may be due to the fact,
common to almost all numerical models at this time, that sharp edges give rise to edge
singularities and these are not properly accounted for in discrete representation of the field
used for computation.
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Figure 6: Theoretical predictions of the variation of magnetic field measurements due to a
square recess measurements at a frequencies 0.5kHz (data 1) 1.5kHz (data 2) and 2.5 kHz
(data 3). Note that the phase of the response changes by over 100 degrees for a frequency
change from 0.5kHz to 2.5kHz.

1.3 Conclusions

• Progress: It was our intention, at the start of the current project, to validate fully
a new volume element code based on a discrete representation of the electromagnetic
field in terms of edge elements. This as not been possible firstly because the original
plan was perhaps a little ambitious. In our optimism it was felt that a new volume
element formulation could be developed and coded within a few months. Other
factors included the delays in finalizing the contractual arrangements between ISU
and Cassino which lead to delays in completion of the formulation thus limiting the
development time that could be spent on the new code. At this stage, the edge
element formulation has been coded for a half-space conductor rather than a layered
conductor, therefore it need further work before calculations can be compared with
measurements on flaws in plates. However selected comparisons between theory and
experiment have been carried out using the earlier code based on a traditional volume
element scheme.

• Sensors: Experiments have been performed with a single sensor probe to test the-
oretical results and to refine experimental techniques. Two precision made probes
with Hall sensors have been built to perform the measurements although in fact, all
the experimental data presented here is for a probe with a Honeywell 634SS2 sen-
sor. The Honeywell was first choice simply because it is familiar to us. However
the Asahi Kasia HW-108A has a good specification on paper, has the advantage of
being enclosed in a small package and therefore seems suitable for a high density
array. A single line of such sensors could be mounted less than 2.5 mm apart. By
using say three parallel lines of sensor in a staggered array, it would be possible to
get measurements in the direction of the senor lines with a separation of about than
1 mm.
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Figure 7: Magnetic field measurements of holes in a conducting plate.

• Comparisons: The experimental technique has been greatly improved during this
phase of the project and there is no doubt that the data is calibrated correctly and is
reliable. Overall the comparison between theory and experiment are reasonable and
usually within 10%. The discrepancies are thought to be related to limitations of the
model rather than errors in the experiment. It is to be hope that the edge element
model will provide further improvements in the accuracy of the predictions.

• Imaging: While awaiting the completion of the new formulation by colleagues at
the University of Cassino, the question of producing quantitative images of a corrode
region was address. This topic is taken up in the following article. At the time of
writing, no numerical experiment have not been perform to illustrate the use of the
imaging technique but given the simplicity of the approach, this will not be difficult
and should be carried out in the near future.
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Figure 8: Model representation of a 5.5 mm diameter countersunk rivet in a conducting
plate.
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Figure 9: Magnetic field measurements of a 5.5 mm diameter rivet in a conducting plate,
comparison of experiment with theory. The unknown fastener conductivity was varied for
the best fit.

45 mm

Figure 10: Simplified lap joint: 2mm thick plates, 45 mm wide lap joint with a 0.14 mm
insulating layer between.
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Figure 11: Magnetic field predictions for a simplified lap joint 45 mm wide forming a 2
plate stack with a 0.14 mm gap between plates. The in-phase (real part) and quadrature
component (imaginary part) of the field at the axial sensor are shown as a function of
position. The upper pair of results are for a frequency of 500Hz and the lower pair for a
frequencies of 2.5 kHz.
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Appendix A

Probe Characterization and Calibration Procedure

1. Coil winding: The coil former dimensions are measured, the coil is wound evenly
on the former, the number of turns noted and the outer diameter measured.

2. Free space impedance: The coil impedance is measured in free space as a function
of frequency over the operating frequency range of the probe (40 Hz-10,000 Hz in this
case) using an impedance analyzer (Agilent 4294A). The free space self inductance of
the probe, L0 in the zero frequency limit is found by extrapolating the self-inductance
data to the zero frequency limit. The theoretic value of L0 is compared with the
experimental value to check that it is consistent with the coil dimensions and the
number of turns. If the calculated L0 disagrees with measurement, the outer radius
of the coil is incrementally adjusted, Figure A1 until agreement is reached.

3. Correction inter winding capacitance The effective shunt capacitance of the coil,
C0 is found. This value is used to correct measured impedance before comparison
with theory.

4. Half-space coil impedance: The coil impedance is measured as a function of
frequency with the probe on a thick conducting copper plate. Measurements are
made over the operating frequency range of the probe. These measurements are then
corrected for the effect of the shunt capacitance and compared with the theoretical
predictions from the theory of Dodd and Deeds[3]. A root mean square error function
is used to quantifying the fit of all the data to the theory and is calculated from

E2 =
∑

m=1,M

|Z(expt)m − Z(ωm)|
2 (A1)

where Z
(expt)
m is the corrected experimental measurement at frequency ωm, Z(ωm) is

the theoretical value and the sum is over for all M measurements. The effective coil
lift-off value zc is then adjusted until this error is a minimum.

5. Sensor location: The Hall sensor is then mounted on the coil axis and the location
of the sensitive region found from a micro-focus X-ray.

6. Magnetic sensor calibration: The Hall sensor is calibrated in air as follows. A
standard resistor is connected in series with the coil and the ac signal output from a
Stanford lock-in analyzer applied across the coil and resistor. The lock-in is used to
determine the coil current and the Hall voltage. Because the coil is in air, a simple
expression can be used to determine the magnetic field at the site of the Hall sensor.
Since the field is known, the sensor can be calibrated over the operating frequency
range of the probe.

7. Half-space field measurements: The field measured by the Hall device is then
determine as a function of frequency with the probe on a thick metal copper plate
of known conductivity. These results are then compared with the theoretical values
and a least squares error function computed as for the impedance data:
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F2 =
∑

m=1,M

|H(expt)
m −H(ωm)|

2 (A2)

The Hall device liftoff value, zH , is them varied until this error function reaches a
minimum.

h
c

2a

2b

h

z
z

FIGURE A1. Probe cross section showing key probe parameters.
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Appendix B

Probe Characterization and Calibration Results

Results given in this appendix refer to the characterization and calibration of probe P3
(see Table 1 or the main text for its nominal dimensions) following the procedure given in
Appendix A.

B1 Coil characterization

Having wound the coil for probe P3, the impedance was measured in air as a function
of frequency, Figure B1. The coil resistance varies little with frequency, although at high
frequency it increases due to the skin effect in the windings.
Typically the predicted self inductance of the probe calculated from the measured

dimensions is less the experimental value. This is attributed to the fact that direct mea-
surement of the outer diameter overestimates the effective value due to unevenness in
the windings. A reduced value of the outer diameter is adopted for which the predicted
self-inductance matches the measured value in the low frequency limit, found by extrap-
olation of the measurements to zero frequency. The low frequency limiting value of the
self-inductances is 0.054634 mH and the adjusted outer radius is 13.518 mm.

Table B1: Coil Parameters

Parameter Value Notes
Inner radius 6.300 mm Measured

Outer diameter 13.518 mm Fit of self inductance predictions
Number of turns 1750 Counted

Height 4.860 mm Measured
Liftoff 0.710 mm Fit of half-space impedance predictions

Next, multi-frequency impedance data were obtained for the probe on a thick copper
plate. Before these data can be used for comparison with theory, a correction must be
made for the effects of parallel capacitance in the probe cable and between the windings.
The Dodd and Deeds [3] model does not account for the effects of stray capacitance and
so simple circuit theory is used in a compensation scheme.
The experimental impedance change due to a thick copper plate is compared with Dodd

and Deeds predictions [3] of the impedance change due to a copper half-space conductor.
The coil lift-off, the distance between the base of the coil and the surface of the conductor,
is adjusted for best agreement. Matching with Dodd and Deeds predictions seems to be the
most accurate method of estimating the coil lift-off, direct measurement being difficult. In
this case a value of 0.71 mm was determined by impedance fitting. See Figures B2 for the
comparison between theory and experiment for the coil impedance on a copper half-space.
The coil parameters found following the impedance measurements are summarized in Table
B1.
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Figure B1: Coil resistance and self-inductance variation with frequency.

B2 Sensor Calibration

The coil current excitation is provided by a lock-in amplifier output and measured using
the lock-in by monitoring the voltage drop across a 10Ω standard resistor in series with the
coil. Similarly the Hall sensor voltage is measured by the lock in. Because the instrument
acts as a voltage source and the load is inductive, the load impedance and the coil current
varies with frequency and hence the Hall signal varies with frequency as shown by probe
measurements in free space, Figure B3.
The ratio of the Hall voltage to the coil current should be reasonably constant provided

that the operating frequency range is within the bandwidth of the Hall sensor preamplifier.
This is certainly true for the dominant real part1, Figure B4. It is estimated that the
Hall sensor, like the coil, has a lift-off of 0.71 mm. Using this value and the other probe
parameters, the field on the coil axis at the site of the sensor has been calculated. The
calculated value of the field at the sensor for the probe in free space per unit coil current is
H0 = 81, 316Amps/m. Note also the characteristic parameter RHC = 5.317Ω which is the
real part of the ratio of the Hall voltage to the probe current with the probe in air. This
value varies slightly, see Figure B4, but we adopt a constant value determined at 2000 Hz.
From measurements of the Hall sensor voltage VH and the coil current Ic, the magnetic
field at the sensor is given by

Hz =
H0
RHC

VH
Ic

(B1)

Using this calibration procedure, the axial magnetic field at the sensor has been pre-
dicted for a probe on a copper half-space and compared with calibrated measurements
made with the probe on a thick copper plate. These results are show in the main text.

1The real part corresponds to the component in phase with the reference signal of the lock-in.
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Figure B3: Coil current Ia and magnetic field sensor voltage Va variation with frequency
in free space.
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Article 2

Imaging and Inversion of Corrosion Loss

2.3 Estimations of Material Loss

In eddy current NDE, scan data is often presented in the form of a false color map or
an ‘image’. Typically the data is color coded with minimal pre-processing and because
measurements contain phase as well as amplitude information some of this information is
necessarily lost when creating the image. Ideally one would like a map of the material loss
rather than a simple probe dependent data image but this seems to require a complicated
and time consuming inversion algorithm which would extract quantitative material loss
data from sensor signals (such a scheme, incidently, has not yet been implemented even
though the methods needed to accomplish the task are known [1]).
Image processing techniques using Fourier transformations and filtering are fast, simple

and can reduce the noise but seem better suited to the important but somewhat cosmetic
task of improving the appearance of the image rather than extracting quantitative estimates
of material loss. Can we get a contour or false color map of the material loss via a method
that is fast, like the standard image processing methods and avoids the computational
burden of a full blown inversion? For small amounts of material loss in a flat plate, the
answer appears to be “Yes”.

2.3.1 Eddy current imaging

Material loss in the form of an overall plate thinning can be estimated by elementary
calibration techniques. One simply carries out measurements of the eddy current signal for
a number of different plate thickness and records the relationship between signal and plate
thickness, possibly in the look-up table. This is a very limited way of estimating material
loss for a number of reasons. For example, it cannot deal with local variations of thickness
and gives no indication of the surface roughness. In addition, it will not work were a signal
due to a structural feature interferes with the material loss signal.
The last of these problems is difficult to overcome and will not be addressed here but

the other two can be dealt with using a relatively simple method based a deconvolution
of the probe and flaw functions. For a flat plate, or for a stack of flat plates, with local
thinning in one plate due to say corrosion, the flaw signal can be expressed as a convolution
of a flaw and a probe function having the form

V (x, y) =

∫ ∞

−∞

∫ ∞

−∞
H(x− x′, y − y′)F (x′, y′) dx′ dy′, (2.2)

where V represents the measured signal, H is the point spread function of the probe and
F the flaw function. This expression is valid if the material loss is small compared with
the plate thickness (say less than 15%). Equation (2.2), may be written as

V = H ∗ F (2.3)

where the ∗ represents a two dimensional convolution. The deconvolution can be carried out
to find the flaw function using Fourier transform techniques and the Weiner filter. Thus,
an approximation of the deconvolved function is obtained from the inverse 2-D Fourier
transform of
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F̃ =
H̃∗

H̃H̃∗ +K
Ṽ (2.4)

where F̃ is the 2-D Fourier transform of the flaw function, F̃ is the 2-D Fourier transform of
the point spread function and K is a constant depending on the noise in the data. Equation
(2.2) is justified later in this article but first, it is helpful to recall its previous use in eddy
current signal processing.

2.3.2 Surface crack imaging

The idea of expressing an eddy current probe signal as a convolution is not new. An early
attempt to deconvolve eddy current signals due to surface defects such as cracks in turbine
disks was made by Joyson, McCary, Oliver Silverstein-Hedengren and Thumhart [2] at
GE’s Corporate Research and Development. Clearly, the work at GE and elsewhere which
treats eddy current images as convolutions, would have a better foundation if it could be
justified theoretically for surface cracks. Equation (2.2) is simply assumed, as a working
hypothesis, in the hope that the results justify the approach á posterior but the physics of
the problem seems at variance with the assumption.
The interaction with a crack depends on the direction of the induced current which

must be taken into account even if the formula used for the measured signal, equation
(2.2), is a scalar formula. In the GE work, a tape head probe was used to control the
field direction giving a flaw image which is dependent on the probe orientation. There are
disadvantages in being restricted to tape head probes and having to deal with crack images
that are orientation dependent. However, the probe response to subsurface corrosion is
not strongly direction dependent, which suggests that deconvolution in this context may
successful for a wide range of probes.
A time-harmonic field is typically represented by a phasor, hence the interaction with

a surface crack is described by a complex vector process in three dimensions. It is not
clear how the crack signal would reduce theoretically to a real scalar convolution in two
dimensions as represented by (2.2). However, the theoretical reduction to a complex 2D
scalar convolution can be performed for limited subsurface corrosion loss in a plate.

2.3.3 Imaging subsurface corrosion in a plate

Although (2.2) has not been justified theoretically for surface flaws such as cracks, it can
be supported for small amounts of material loss in plates. The reason for this is that plate
thinning gives a small perturbation of the field over a relatively large region whereas a
crack gives a large localized field perturbation.
In general the flaw signal detected by a driver pick-up probe can be derived rigorously

from a reciprocity principle [3] to give, suppressing the probe coordinates,

V12 = −

∫

Ω0

E(1)(r′) ·P(r′) dr′ (2.5)

for unit coil current, where Ω0 is the flaw region, E
(1)(r′) is the unperturb field at the

flaw due to the pick-up sensor2 and P(r) is the current dipole density of the flaw induced

2If the pick-up happens to be a magnetic field sensor then the corresponding electric field is that produced
by a magnetic dipole at the site of the sensor.
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by the driver. A plate or a system of parallel plates perpendicular to the z-axis has
a translational invariance which allowing the unperturbed electric field to be written as
E(n)(x − x′, y − y′, z′) with x and y as the probe coordinates. For pick-up and driver,
n = 1, 2 respectively.
For small amount of material loss due to corrosion at the surface of a plate, the inte-

gration over the direction normal to the surface of the unflawed plate, the z−direction in
this case, can be approximated as

∫
E(0)(r′) ·P(r′) dz′ = σ0E

(1)(x− x′, y − y′, z0) ·E
(2)(x− x′, y − y′, z0)δz(x

′, y′) (2.6)

where δz(x′, y′) is the height of the loss region, z0 is the z−coordinate of the the original
(unflawed) surface and E(2)(x′, y′, z0) is the unperturbed field due to the driver coil. This
approximation can be justified by using the approach described in reference [1] where an
expression for the variation of the probe response is given for a small variation in the loca-
tion of a conducting surface. The variation δz(x′, y′) is interpreted as being associated with
material loss due to corrosion and the variation of probe signal, written as V12, represents
the signal due to material loss.
Substituting (2.6) into (2.5) and putting

H12(x− x
′, y − y′) = −σ0E

(1)(x− x′, y − y′, z0) ·E
(2)(x− x′, y − y′, z0) (2.7)

gives

V12(x, y) =

∫ ∞

−∞

∫ ∞

−∞
H(x− x′, y − y′)δz(x′, y′) dx′ dy′ (2.8)

which is a two dimensional convolution for the material loss δz(x, y).

2.4 Conclusion

The thesis presented here is that the deconvolution via Weiner filtering applied to eddy
current data images of surface cracks has not been justified theoretically and is not effective.
However, the same procedure can be used to find the material loss from a flat plate in a
stack of flat plates. The basic requirement is that the loss estimator δz(x, y), must be small
compared to the plate thickness.
A key practical question for further consideration is one of resolution. It is well known

that corrosion can be intensely localize in the form of pits which may be small. The
ability to find the depth of such features using the Fast Fourier Transform methods may be
limited because of both the fundamental limitation of the eddy current modality, it is after
all a highly diffusive phenomena, and in addition there are sampling limits which reduce
resolution. The former can be mitigated by using higher frequencies, the latter by using a
high density sensor array.
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Article 3

Eddy current excitation using a racetrack coil with
a sensor array for magnetic field measurement

J. R. Bowler and V. Katyal

Iowa State University, Center Nondestructive Evaluation,

ASC II, 1915 Scholl Road, Ames Iowa 50011.

Abstract Calculations have been performed to determine the response
of a new eddy current probe for the detection of subsurface flaws in
planar multilayered structures. The probe consists of a racetrack coil
and a linear array of solid state sensors for detecting perturbations in
the electromagnetic field due to defects. The sensor array allows field
measurements to be made at a number of closely spaced locations with-
out moving the probe and thereby accelerates the inspection process. A
magnetic shell model of the probe is used for finding the electric field in
the unflawed structure. The fields due to the linear “straights” and the
semicircular “bends” are found separately and added to give the com-
bined field of the racetrack coil. The flaw response is then computed
using a volume element calculation. In order to validate the calculation,
field predictions for a racetrack coil having straights of zero length are
compared with results for a circular coil. The results are found to be
consistent.

3.1 Introduction

In eddy current inspection, an induction coil is often used both to induce current in a
conducting component and to detect magnetic field perturbations due to flaws. For sub-
surface defects, a low frequency excitation ensures an adequate depth of field penetration.
However, at lower frequencies the effectiveness of the coil as both inducer and sensor is
diminished since electromagnetic induction depends on the rate of change of magnetic flux.
To overcome the limitations of the induction coil as a low frequency field sensor, a solid
state device, such as a giant magneto-resistor or Hall sensor, can be used instead. A coil
used only as driver can be larger than otherwise without compromising the spatial reso-
lution of the measurements. The large coil can produce a greater field while good spatial
resolution is obtained by using small sensors.
This article gives the analysis of an eddy current probe for the detection of subsurface

flaws in multilayered structures such as aircraft skins. The probe contains a racetrack
coil with semi-circular bends and linear straights, Fig. 1. The magnetic field between
the straights is measured using a linear array of magnetic field sensors. The sensor array
samples the magnetic field at multiple sites without moving the probe and hence reduces
the inspection time. The overall objective of this work is to evaluate the capabilities of
array probes and assess their performance for the detection of cracks, material loss and
surface roughness due to corrosion. Here we focus on the details of the coil field calculation.
The theory for computing the electromagnetic field of a racetrack coil, Fig. 1, has been

developed by determining separately the electric field due to the bends and the straights
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and summing to obtain the total field. Section II gives the theory for the straight linear coil
elements and Section III describes the solution for the D-coil representing a semicircular
bend. The results and conclusions follow the analysis sections.

3.2 Linear Coil Field

The following account describes the calculation of the electric field induced in a conductor
by a time-harmonic current in a linear coil consisting of only the straight parts of the
racetrack coil shown in Fig. 1. The current path is closed by joining the ends of the
straights by current filaments but ultimately the effect of these filaments is cancelled by
similar filaments added to the representation of the bends. Results are given for a field in
a homogeneous half-space conductor in the region z < 0, and an infinite conducting plate.
However, similar results for layered conductors are readily obtained by simply changing the
Green’s functions used in the present calculation in favor of one which embodies the correct
interface conditions of a stratified conductor. The magnetic dipole formulation used in this
section to represent the field of the straights is also used for the bends in the next section.
Consider a non-magnetic conductor occupying the half-space defined by z < 0, excited

by a current source. The electric field in adjoining half-spaces is a solenoidal solution of,

∇2E(r) =  ωµ0 J (r), z ≥ 0 and
(
∇2 −  ωµ0σ

)
E (r) = 0, z < 0, (3.1)

where σ is the conductivity of the conductor. The electric field, being transverse to the
z−direction and having zero divergence, can be expressed in terms of a transverse electric
(TE), scalar potential:

E (r) = − ωµ0∇× ẑψ
′(r), (3.2)

where ẑ is a unit vector in the preferred direction. The transverse source current J(r),
having zero divergence, can similarly be written in transverse scalar form as

J(r) =
1

µ0
∇× [ẑM(r)]. (3.3)

The function M(r) represents the current source in terms of the magnetic dipole density,
the orientation of the polarization being in the z−direction. This is an adaptation of the
magnetic shell model which represents a filamentary current loop in terms of magnetic shell
bounded by the loop. Here, the magnetic dipole distribution occupies a volumetric region
between the upper and lower extent of the coil where h+ c ≥ z ≥ h− c, 2c being the height
of the coil and h the height of the mid point of the coil above the surface of the conductor.
Equations (3.2) and (3.3) are substituted into (3.1) to give

∇2ψ′(r) = −
1

µ0
M(r), z ≥ 0 and

(
∇2 − ωµ0σ

)
ψ′(r) = 0, z < 0. (3.4)

An expression for the solution in terms of a Green’s function, satisfying

∇2G(r, r′) = −δ(r− r′), z ≥ 0 and
(
∇2 − ωµ0σ

)
G(r, r′) = 0, z < 0, (3.5)

is written as

ψ′(r) =
1

µ0

∫

Ω0

G(r, r′)M(r′) dr, (3.6)
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where the Green’s function, like ψ′, is continuous at the air conductor interface, has a
continuous normal gradient and vanishes at infinity. The Fourier transform with respect
to x and y is written

∼
f (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−iux−ivy dx dy. (3.7)

Hence by taking the Fourier transform of equation (3.6) with respect to x and y, and noting
the convolutional properties of the integral, it is found that

∼

ψ′ (u, v, z) =
1

µ0

∫ h+c

h−c

∼
g (u, v, z, z′)

∼
m(u, v, z′) dz′, (3.8)

where the integration is between the lower and upper limits of the source coil and
∼
g and

∼
m

are the Fourier transforms of G and M respectively.
The y-component of the current density in the straight elements of the source coil, Fig.

1, is written as

Jy(r) =

{
nI sign(x), h− c ≤ z ≤ h+ c, b ≤ |x| ≤ a, |y| ≤ d,
0, otherwise

(3.9)

where I is the current, n the number of turns per unit area and the current is deemed to
flow in a counter-clockwise direction viewed from above. It can be deduced from (3.3), by
writing

M(x, y, z) =

{
µ0nIf(x, y), h− c ≤ z ≤ h+ c
0, otherwise

(3.10)

that

f(x, y) =





a− b, 0 ≤ |x| ≤ b, |y| ≤ d,
a− |x|, b ≤ |x| ≤ a, |y| ≤ d,
0, otherwise.

(3.11)

Because f(x, y) is even in x and y, the Fourier transform may be written in the form of
the double cosine integral

∼
f (u, v) = 4

∫ ∞

0

∫ ∞

0
f(x, y) cos(ux) cos(vy) dx dy

= −
4

u2v
[cos(ua)− cos(ub)] sin(vd). (3.12)

An expression for the electric field which can be evaluated numerically is obtained in
the following way. The Fourier transform of (3.2) with respect to x and y is

∼
e (u, v, z) = −ωµ0(vx̂− uŷ)

∼

ψ′ (u, v, z) (3.13)

where
∼

ψ′ is given by (3.8) and (3.10) as

∼

ψ′ (u, v, z) = nI
∼
f (u, v)

∫ h+c

h−c

∼
g (u, v, z, z′) dz′, z < 0. (3.14)
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For a half-space conductor

∼
g H−S(κ, z, z

′) =
1

γ + κ
eγz−κz

′

(3.15)

where γ =
√
κ2 + jωµ0σ, taking the root with a positive real part. Similarly, Green’s

function for a slab is computed by taking into account the reflection from the internal
surfaces,

∼
g Slab(κ, z, z

′) =
1

γ + κ
eγz−κz

′ 1 + Γe−2γ(d+z)

1− Γ2e−2γd
(3.16)

where Γ = γ−κ
γ+κ , the reflection term and d = height of the slab. Performing the integration

in (3.14) gives

∼

ψ′ (u, v, z) = 2nI
∼
f (u, v)

∼
g (u, v, z, h) sinh(κc)/κ, z < 0, (3.17)

hence by substituting into (3.13) it is found that

∼
e (u, v, z) = −2ωµ0nI

vx̂− uŷ

κ

∼
f (u, v)

∼
g (u, v, z, h) sinh(κc), z < 0. (3.18)

The electric field can now be computed using a fast-Fourier-transform algorithm.

3.3 D-Coil Field

Two D-coils are used to represent the bends of the racetrack coil, Fig. 1. Using essentially
the same formulation that was used for the linear coil, ψ′ for the D-coil is written as in
(3.6). It is convenient to express the Green’s function in cylindrical polar coordinates, as

G(r, r′) =
1

2π

∞∑

m=0

εm cos[m(φ− φ
′)]

∫ ∞

0
Jm(κρ)Jm(κρ

′)
∼
g (κ, z, z′)κ dκ, z < 0, (3.19)

which can be derived using an approach given by Morse and Feshbach [1]. In (3.19), εm is
the Neumann factor: ε0 = 1 and εm = 2 (m = 1, 2, 3, . . .). For the interior of a half-space

conductor,
∼
g is given by (3.15). For for a slab,

∼
g is given by (3.16). In order to evaluate

(3.6), the explicit form of M(r) appropriate for the D-coil must be found. This form is
developed as follows.
The azimuthal counter-clockwise current in a D-coil is written as

Jφ(r) =

{
nI, h− c ≤ z ≤ h+ c, 0 ≤ φ ≤ π, b ≤ ρ ≤ a
0, otherwise.

(3.20)

where I is the current, n the number of turns per unit area. It can be deduced from (3.20),
by writing

M(ρ, φ, z) =

{
µ0nIfD(ρ), h− c ≤ z ≤ h+ c, 0 ≤ φ ≤ π,
0, otherwise

(3.21)

that

fD(ρ) =





a− b, 0 ≤ ρ ≤ b,
a− ρ, b ≤ ρ ≤ a,
0, otherwise

(3.22)
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It is now possible to obtain ψ′ by substituting equations (3.19) and (3.21) into (3.6).
Integration with respect to ρ′, φ′ and z′ gives a summation of integrals with respect to κ:

ψ′(r) = nI

[
1

π

∞∑

λ=0

4

2λ+ 1
sin[(2λ+ 1)φ]

×

∫ ∞

0
[J2λ+1(κρ)F2λ+1(a, b, κ)

∼
g (κ, z, h) sinh(κc)] dκ

+

∫ ∞

0
[J0(κρ)F0(a, b, κ)

∼
g (κ, z, h) sinh(κc)] dκ

]
(3.23)

where

Fν(a, b, κ) =

∫ a

0
fD(ρ)Jν(κρ)ρdρ

=
1

κ2

[
aJ (1)ν (κa)− bJ (1)ν (κb)

]
−
1

κ3

[
J (2)ν (κa)− J (2)ν (κb)

]
(3.24)

with fD given by (3.22) and

J n
ν (z) =

∫ z

0
xnJν(x) dx. (3.25)

These functions are evaluated for ν > 2 with the aid of a recursion relationship

(ν − n)J n
ν+1(z) = −2νz

nJν(z) + (ν + n)J
n
ν−1(z) (3.26)

derived using Eq 11.3.6 of reference [2].
The integrals with respect to κ must be computed numerically and the summation in

(3.23) truncated at a suitable order depending on the required accuracy of the result. For
the double-D filament loop [3] a truncated series of five terms is sufficiently accurate in
most cases and the same is true for the series in (3.23) representing the potential due to a
racetrack coil bend.
From equation (3.2), the electric field in cylindrical coordinates is

E(r) = − ωµ0

(
ρ̂
1

ρ

∂

∂φ
− φ̂

∂

∂ρ

)
ψ′(r). (3.27)

The components of the electric field are therefore,

Eρ(r) = −
4 ωµ0nI

πρ

∞∑

λ=0

cos[(2λ+ 1)φ]

×

∫ ∞

0
J2λ+1(κρ)F2λ+1(a, b, κ)

∼
g (κ, z, z0, h) sinh(κc) dκ (3.28)

and

Eφ(r) =  ωµ0nI

{
1

π

∞∑

λ=0

4

2λ+ 1
sin[(2λ+ 1)φ]

∫ ∞

0

[
κJ2λ(κρ)−

2λ+ 1

ρ
J2λ+1(κρ)

]
F2λ+1(a, b, κ)

∼
g (κ, z, h) sinh(κc) dκ

−

∫ ∞

0
κJ1(κρ)F0(a, b, κ)

∼
g (κ, z, h) sinh(κc) dκ

}
(3.29)

respectively.
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3.4 Results

The sensor signals due to a square recess in the bottom surface of a plate of thickness 4.85
mm, Fig. 2, with the racetrack coil above the plate providing the excitation field has been
calculated using a volume element code [4]. The dimensions of the recess are 25.4 mm ×
25.4 mm × 3 mm. These and other parameters are given in Table 1.
The sensors measure the magnetic field component normal to the surface of the con-

ductor. Fig. 3, compares the variation with probe position of the normal magnetic field
at a central sensor. Field values are normalized to a coil current of 1 Amp. The field
variation is due to the back surface recess is plotted for three racetrack excitation coils.
One has 32 mm straight sections, one has 16 mm straight sections and the other has no
straight sections and is thus a circular coil. Results from the zero straight section coil
using computer code for the racetrack analysis agree with results for a dedicated circular
coil calculation [5]. The absolute value of the z-component of the field found by simulating
the response of a 33 element sensor array is shown in Fig. 4.

3.5 Conclusion

The theory for a racetrack coil in the presence of a stratified conductor has been given
in two parts based on a formulation using a magnetic dipole representation of the effect
of the coil. In the first part the field due to the straight sections of the track are found
using a two dimensional Fourier transform, and in the second part, the field due to the
semicircular bends of the track are determined using integrals containing Bessel functions.
The racetrack coil geometry will be incorporated into a probe design in which an array
of magnetic sensors are located along the center line of the track parallel to the straight
sections. In this way the local applied field experienced by each sensor is similar yet the
probe itself is compact and easy to manipulate.
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Table 3.2: Test Parameters for magnetic sensor measurements on a hidden surface material-
loss specimen.

Coil

Outer radius 10.625 mm
Inner radius 1.6875 mm
Axial length 4.98 mm
Nominal lift-off 2.5825 mm
Number of turns 337± 1 mm
Number of sensors 33
Height of sensors 0.869 mm
Distance between sensors 2.0 mm
Frequency 2000 Hz

Plate

Conductivity 1.82× 107 S/m
Thickness 4.85 mm

Flaw

Length 25.4 mm
Width 25.4 mm
Depth 3.00 mm
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FIG. 1. Racetrack probe showing coil geometry and magnetic field sensor array.
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FIG. 2. Conducting plate with a square recess.
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FIG. 4. Magnitude of the magnetic field at 32 sensor sites due to racetrack coil excitation
of a metal plate containing a back surface recess, Fig. 2. The excitation frequency is 2000
Hz, 2d = 64 mm (see Fig. 1) and the other probe dimensions are as given in Table I.



Green’s Dyad 32

Article 4

Dyadic Green’s Functions for the Calculation of
Eddy Currents in Planar Stratified Conductors

4.1 Introduction

The use of dyadic Green’s functions for electromagnetic field problems is discussed in refer-
ence [1]. The dyadic Green’s function for an infinite stratified conductor in the quasi-static
limit can be derived using scalar decomposition. The approach [2] reduces the problem to
one of finding scalar transverse magnetic (TM) and transverse electric (TE) components
of the field in a multi–layered planar structure. Here we give specific results for a half-
space conductor and an infinite slab. The tedious but straightforward steps describing the
derivation of the TE and TM scalar Green’s functions satisfying the appropriate continuity
conditions at layer interfaces are omitted.

4.2 Dyadic Green’s Function

4.2.1 Scalar Decomposition

The required dyadic Green’s function, representing physically the electric field due to a
singular electric source, can be written in the form [2][3]

G(r|r′) =
1

k2
(∇×∇× ẑ)(∇′ ×∇′ × ẑ)U ′(r|r′) + (∇× ẑ)(∇′ × ẑ)U ′′(r|r′). (4.1)

where the ‘wavenumber’ k having a positive real part is found from k2 = iωµσ. This
scalar form is valid everywhere except at the singularity [2] but this need not concern us
because the correct representation of the singularity is well know and in any case will be
reintroduced later [by using eq (4.8)]. The numerical treatment of the hyper-singularity
will not be discussed here however reference [4] covers this topic adequately.
The functions U ′ and U ′′ are related to transverse magnetic (TM) and transverse electric

(TE) Green’s functions by
[
G′(r|r′)
G′′(r|r′)

]
= −∇2t

[
U ′(r|r′)
U ′′(r|r′)

]
. (4.2)

In homogeneous regions, the scalar Green’s functions, G′ andG′′, satisfy the inhomogeneous
Helmholtz equation:

(∇2 + k2)

[
G′(r|r′)
G′′(r|r′)

]
= − δ(r− r′) (4.3)

subject to appropriate interface conditions which are derived from the continuity of the
tangential electric and magnetic field.

4.2.2 Interface Conditions

Specifically, the continuity of the tangential electric field means that3

3The square bracket is used to denote the jump of a function at an interface. Thus the expression [f ] = j

means that the jump (discontinuous change) in f at an interface is j. If it happens that [f]=0 at an interface
then it means that f is continuous there.
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[
∂G′

∂z

]
= 0 and [µG′′] = 0 (4.4)

Similarly the continuity of Ht implies that

[σG′] = 0 and

[
∂G′′

∂z

]
= 0. (4.5)

The continuity conditions are applied to determine the Fourier transform of the TE and
TM Green’s functions.

4.2.3 Fourier Representation

Using a two-dimensional Fourier representation, denoted by a tilde, we define

G̃(z, z′) =

∫ ∞

−∞

∫ ∞

−∞
G(r|r′)e−iu(x−x

′)−iv(y−y′)dudv, (4.6)

with the inverse

G(r|r′) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
G̃(z, z′)eiu(x−x

′)+iv(y−y′)dudv, (4.7)

where the tilde implies dependence on the Fourier space coordinates u and v.

4.2.4 Further Useful Dyadic Forms

The scalar decomposition, (4.1) is transformed to more convenient forms by using the
following two equations which can be derived using identities give on page 18 of the text
by Felsen and Marcuvitz [2].
[
I +

1

k2
∇∇

]
GΥ(r|r

′) =
1

k2
(∇×∇×ẑ)(∇′×∇′×ẑ)UΥ(r|r

′)+(∇×ẑ)(∇′×ẑ)UΥ(r|r
′) (4.8)

where the subscript Υ denotes , x − x′, y − y′, z − z′ dependence. Although the scalar
form (4.1) and the equivalence (4.8) are not valid at the singular point, our final result
will contain the correct representation of the singularity in the form of the left hand side
of (4.8). The second equation for transforming (4.1) is
[
I ′ −

1

k2
∇∇′

]
GΛ(r|r

′′) = −
1

k2
(∇×∇× ẑ)(∇′×∇′× ẑ)UΛ(r|r

′′)+(∇× ẑ)(∇′× ẑ)UΛ(r|r
′′)

(4.9)
where the subscript Λ denotes a x− x′, y − y′, z + z′ dependence and I ′ = x̂x̂+ ŷŷ − ẑẑ.

4.2.5 Evaluation of the Scalar Green’s Function

Suppose we have a multilayered structure then we need a subscript to identify which layer
is being referred to. We shall not however introduce this layer subscript since the details
will be omitted. However, to summarize briefly, we locate the singular source in one of
these layers. Then proceed as follows:

• Write the Fourier transform of the solution of (4.3) as

G̃(z, z′) = A(κ)e−γz +B(κ)eγz

for each layer.



Green’s Dyad 34

• Apply the boundary conditions to find all the A and B coefficients. If the number of
layers above and below the source layer is arbitrary then the relationships between
the coefficients can be expressed recursively [5] as is done for example, by Dodd,
Cheng and Deeds [6] for the field in a multilayered cylindrical structure.

• Use (4.1) (4.8) and (4.9) to express the dyadic Green’s function in a form suitable
for computation.

Two examples are given below.

4.3 Homogeneous Half-Space

4.3.1 Scalar Forms

A simple example of the general layered domain is one where the source is located in a
homogeneous half-space conductor (z’¡0) adjoining a non-conducting half-space (z¿0). For
the field in the conducting half-space (z < 0),

G̃′(z, z′) =
1

2γ

[
e−γ|z−z

′| − eγ(z+z
′)
]

G̃′′(z, z′) =
1

2γ

[
e−γ|z−z

′| +
γ − κ

γ + κ
eγ(z+z

′)
]
, (4.10)

with γ2 = κ2 − k2 and κ2 = u2 + v2, taking positive real roots in each case.
As in more complicated cases, such as the slab below, it is useful to express the scalar

Green’s functions, for both TE and TM modes, as (suppressing the primes distinguishing
TE and TM modes)

G̃(z|z′) = G̃Υ(z|z
′) + G̃Λ(z|z

′), (4.11)

where, the z−z′ dependent Green’s function GΥ(z|z
′) is just the unbounded domain term,

G0 say,

G̃Υ(z|z
′) =

1

2γ
e−γ|z−z

′| = G̃0(z|z
′), (4.12)

whereas the z + z′ dependent term is

G̃Λ =
1

2γ
Γ(κ)eγ(z+z

′) = −G̃0(z| − z
′) + Ṽ (z|z′) (4.13)

where

Ṽ (z|z′) =
1

2γ
[Γ(κ) + 1]eγ(z+z

′) (4.14)

In this way, the modes are distinguished by having different ‘reflection’ coefficients:

Γ′ = −1 and Γ′′ =
γ − κ

γ + κ
(4.15)

for a nonmagnetic conductor. Note that because the TM reflection coefficient is −1 Ṽ ′ = 0.
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4.3.2 Dyadic Form

Using (4.1), (4.8) and (4.9) the dyadic Green’s function for the half-space conductor is
written as

G(r|r′) =

[
I +

1

k2
∇∇

]
G0(r|r

′)+

[
I ′ −

1

k2
∇∇′

]
G0(r|r

′′)+(∇× ẑ)(∇′× ẑ)V ′′(r|r′) (4.16)

where r′′ = r′ − 2zẑ is the image point and

G0(r|r
′) =

eik|r−r
′|

4π|r− r′|
(4.17)

is the familiar free space scalar Green’s function for the Helmholtz equation.

4.4 Conducting Slab

4.4.1 Scalar Forms

For a conducting slab thickness d we again adopt the form given in equation (4.11) for
both TE and TM modes where we now have

G̃Υ(z|z
′) =

1

2γ

{
e−γ|z−z

′| + e−γ(z−z
′+2d) + eγ(z−z

′−2d) +Υ(κ)
[
eγ(z−z

′−2d) + e−γ(z−z
′+2d)

]}
.

(4.18)
with a reminder that the chosen roots of γ2 = κ2 − k2 and κ2 = u2 + v2 have positive real
parts. For a conducting slab in air, reflection from top and bottom surfaces involves the
same reflection coefficient, hence, with the upper sign for the TE mode and the lower sign
for the TM mode

G̃Λ(z|z
′) =

1

2γ

{
±e−γ(z+z

′) ± eγ(z+z
′−2d) + Λ(κ)

[
eγ(z+z

′−2d) + e−γ(z+z
′)
]}

, (4.19)

where

Υ(κ) =
Γ2

1− Γ2e−2γd
− 1

Λ(κ) =
Γ

1− Γ2e−2γd
∓ 1.

(4.20)

Note that once again

Γ′ = −1 and Γ′′ =
γ − κ

γ + κ
(4.21)

for a nonmagnetic slab.
In (4.18) the second and third term represent the field due to images created by re-

flection at the upper and lower surface of the slab. Similarly the first two terms in (4.19)
represent the field due t single reflections at upper and lower surfaces. The image terms
are separated in order that the computation of matrix element may be performed on these
terms using the same code that is used for the the contribution from the free space Green’s
function. This avoids taking them into account via the alternative, Fourier-Bessel integral,
representation.
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4.4.2 Dyadic Forms

To assemble the explicit slab dyadic Green’s function, we sub the explicit form of the scalar
Green’s functions into equation (4.1). The result is then manipulated using (4.8) and (4.9)
(see Felsen and Marcuvitz [2], p18) to give

G(r|r′) = GΥ(r|r
′) + GΛ(r|r

′), (4.22)

where

GΥ(r|r
′) = G(0)(r|r′) + G(0)(r|r+−) + G

(0)(r|r−+)

+ W−(r|r
′) +∇× ẑ[∇′ × ẑV−(r|r

′)] (4.23)

and

GΛ(r|r
′) = G(i)(r|r+) + G

(i)(r|r−)

+ W+(r|r
′) +∇× ẑ[∇′ × ẑV+(r|r

′)]. (4.24)

The new variables are defined as follows:

r+ = r′ − 2(z′ − d)ẑ

r− = r′ − 2(z′)ẑ

r+− = r′ − 2dẑ

r−+ = r′ + 2dẑ. (4.25)

G0(r|r) is the dyadic Green’s function for an unbounded conductor given by

G(0)(r|r′) = [I +
1

k2
∇∇]G0(r|r

′), (4.26)

with

G0(r|r
′) =

eik|r−r
′|

4π|r− r′|
. (4.27)

The remaining terms in (4.23) are due to reflection at the upper and lower surfaces of the
source stratum. The first two of these remaining terms are double refection image terms.
In (4.24) we find that two single reflection image terms given by

G(i)(r|r±) = [I
′ −

1

k2
∇∇′]φ(r|r±), (4.28)

where I ′ = x̂x̂+ ŷŷ − ẑẑ. The other terms are defined as follows:

W−(r|r
′) = [I +

1

k2
∇∇]W−(r|r

′), (4.29)

W+(r|r
′) = [I ′ −

1

k2
∇∇′]W+(r|r

′), (4.30)

where

W−(ρ, z, z
′) =

1

2π

∫ ∞

0

1

2γ
Υ′(κ)

[
eγ(z−z

′−2d) + e−γ(z−z
′+2d)

]
J0(κρ)κdκ (4.31)
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W+(ρ, z, z
′) = −

1

2π

∫ ∞

0

1

2γ
Λ′(κ)

[
eγ(z+z

′−2d) + e−γ(z+z
′)
]
J0(κρ)κdκ (4.32)

V−(ρ, z, z
′) =

1

2π

∫ ∞

0

1

2κγ

[
Υ′′(κ)−Υ′(κ)

] [
[eγ(z−z

′−2d) + e−γ(z−z
′+2d)

]
J0(κρ)dκ (4.33)

V+(ρ, z, z
′) =

1

2π

∫ ∞

0

1

2κγ

[
Λ′′(κ) + Λ′(κ)

] [
eγ(z+z

′−2d) + e−γ(z+z
′)
]
J0(κρ)dκ, (4.34)

where ρ = [(x− x′)2 + (y − y′)2]1/2.
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1. Introduction 
 
 
This report presents an edge elements based numerical method for computing the 
dipole density P arising from the interaction of eddy currents with a flaw in a 
conductive slab. 

The dipole density appears in the region fΩ  occupied by the flaw and it can 

be determined by solving an integral equation in fΩ . This is a great advantage 

from the numerical viewpoint because it requires the discretization only of fΩ , 

which is generally a small part of the whole conductive domain 0Ω . However, the 
electric-electric dyadic Green’s function in the presence of the conductive 
material (without flaw) is required and the kernel of the resulting integral equation 
is hyper-singular. Moreover, the electric-electric dyadic Green’s function is 
known only for canonical geometries such as, for instance, the homogenous slab. 

Assuming that the conductivity of the flaw is constant, the dipole density is 
solenoidal and can thus be represented as the curl of a vector potential U, which 
we term the dipole vector potential. The numerical formulation is based on the 
Galerkin method applied to the integral equation satisfied by P and expanding U 
as the linear combination of edge element based shape functions. The uniqueness 
of the dipole vector potential is numerically imposed by means of the tree-cotree 
decomposition of the finite elements mesh used to build the edge element shape 
functions. This numerical formulation automatically takes into account the 
solenoidality of P and thus allows the number of unknowns to be reduced with 
respect to the method of moment when applied on the same mesh, and makes it 
possible to improve the rate of convergence of the numerical solution. Moreover, 
by taking into account the solenoidality of P, the volume integral arising from the 
hyper-singular part of the dyadic Green’s function is reduced to a surface integral 
containing the scalar Green’s function as its kernel. 
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2. Mathematical model 
 
 
Let us consider a conductive slab made of a linear, isotropic, non-dispersive, non-
magnetic, non-dielectric and homogenous material of conductivity σ0 hosted in 
free space. Let us assume that the flaw is a volumetric flaw occupying the three 
dimensional domain fΩ  and that the conductivity of the flaw assumes the 

constant value σf (see figure 2.1). 
The governing equations are (assuming the tje ω−  time-dependence): 
 

( )

0
0

00

0

=⋅∇

=⋅∇

−+=×∇

=×∇

H

E

EErJH

HE

ε
ρ

ωεσ

ωµ

j

j

     (2.1) 

 
together with the radiation condition at infinity and1 
 

 ( ) ( )






Ω

Ωℜ
=

ff

f

in  

\in  3
0

σ

σ
σ

r
r       (2.2) 

( )




Ωℜ

Ω
=

0
3

00
0 \in  0

in  σ
σ r       (2.3) 

 
where 0Ω  is the domain occupied by the conductor without the flaw. 
 

ECT coil

Ω0

σ0
Ωf σf

ECT coil

Ω0

σ0
Ωf σf

 
Figure 2.1. The reference geometry. 0Ω  is the spatial region containing a homogeneous 

conductive slab of conductivity σ0. A homogenous anomaly of conductivity σf occupies the 
volumetric domain fΩ . 

                                                 
1 Notice that the symbol ( )r0σ  stands for the function defined by (2.3) whereas σ0 stands for the 
constant. 
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By introducing the dipole density vector field P defined as: 
 

( ) ( ) ( )( ) ( )rErrrP 0ˆ σσ −= ,      (2.4) 
 
Ampere’s law can be written as 
 
 ( ) EErPJH 000 ωεσ j−++=×∇      (2.5) 
 
showing that P acts as a secondary source of the electromagnetic field produced 
without the flaw (i.e. Φ=Ω f ). 

Notice that P is different from zero only in fΩ  ( ( ) ( ) fΩℜ= \in  3
0 rr σσ ), the 

anomalous region. As is well known (see [1]) P in fΩ  can be found by solving 
the following integral equation: 
 ( ) ( ) ( ) ( ) ( ) ( ) f

ee
f

i

f

j Ω∈∀−+= ∫
Ω

rrrPrrGrPrP ,'d''|00 ωµσσ  (2.6) 

where ( ) ( ) ( )i
f

i EP 0σσ −= , ( )iE  is the electric field due to J0 when fσσ =0  (i.e. 

without the flaw) and eeG  is the electric-electric dyadic Green’s function for 

0σσ =f . Notice that eeG  is the solution of: 
 
 ( ) ( ) ( ) ( )''|'| 00 rrIrrGrrrG −=−×∇×∇ δσωµ eeee j   (2.7) 
 
together with the radiation condition at infinity and zzyyxx ˆˆˆˆˆˆ ++=I  is the identity 
operator expressed in terms of unit vectors. 

The integral equation (2.6) is interesting because its numerical solution 
requires the discretization of fΩ  only. 

The property underlying the numerical scheme is that P is solenoidal in f

o
Ω , 

the interior of fΩ . In fact, by assuming that there is no impressed charge density 

in fΩ , i.e. 00 =⋅∇ J  in f

o
Ω , from Ampere’s law (2.1) it follows that 

 0=⋅∇ E  in f

o
Ω        (2.8) 

 
thus from (2.5) 
 

 
( )

.in 0

0

f

f

o
Ω=

⋅∇−=⋅∇ EP σσ
      (2.9) 

 
Notice that for given ( )+∞∈ ,0,0 fσσ  nothing can be said on the normal and 

tangential components of P on fΩ∂ . 

The solenoidality of P in f

o
Ω  can be automatically taken into account by 

introducing the dipole vector potential U defined by: 
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 UP ×∇= .        (2.10) 
 
Notice that (2.9) specifies only the curl of U therefore the uniqueness of U has to 
be imposed by gauging U as shown in Appendix B. 
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3. Numerical model 
 
 
The numerical model proposed in this section is obtained by applying Galerkin’s 
method to eq. (2.6). The unknown is the dipole vector potential U which we 
represent as the linear combination of edge element based shape functions, i.e. 

∑=
e

eeU NU  where the Ne‘s are edge element based shape functions and e 

represents an edge of the mesh (see Appendix A). Specifically, the sum is 
restricted to the edges of a cotree of the finite element to numerically impose the 
uniqueness of U (see Appendix B). 
 

The unknown dipole density (see 2.10) is represented as: 
 
 ∑=

e
eeU PP         (3.1) 

 
where Pe is expressed in terms of Ne as: 
 
 ee NP ×∇= .        (3.2) 
 
Galerkin’s method applied to (2.6) gives: 
 
 ( ) ( )ij VULR =− ω        (3.3) 
 
where U is the column vector made of the Ue‘s and1 
 
 ( )( ) ( ) ( )( )∫

Ω

⋅×∇=
f

i
kk

i rrErNV dˆ      (3.4) 

 ( ) ( ) ( )∫
Ω

×∇⋅×∇
−

=
f

jk
f

kj
rrNrNR d1

ˆ
0σσ

    (3.5) 

 ( ) ( ) ( ) ( )∫ ∫
Ω Ω

×∇⋅⋅×∇=
f f

j
ee

kkj
rrrNrrGrNL d'd''|ˆ 0µ .  (3.6) 

 
Notice that the computation of the matrix L can be troublesome due to the 

hyper-singular part of the dyadic Green’s function Gee. However, the computation 
of hyper-singular integrals can be reduced to the computation of surface integrals 
on fΩ∂ . In order to show this, we first notice that 
 
 ( ) ( ) ( )'|'|'| 0 rrGrrGrrG eeeeee δ+=      (3.7) 
 

                                                 
1 In (3.4)-(3.6) k and j represent edges of the finite elements mesh. 
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where ee
0G  is the electric-electric Green’s function when the whole space is filled 

with a conductive material of conductivity 0σ  and eeGδ  is a continuous function 

in 0Ω . As is well known [2], ee
0G  is: 

 

 ( ) ( )'|1'| 020 rrIrrG g
k

ee 





 ∇∇+=      (3.8) 

where ( )ωσεµω /000
22 jk +=  and g0 is the scalar Green’s function: 

 

 ( )
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'|
'

0 rr
rr

rr

−
=

−

π

jke
g        (3.9) 

 
Following (3.7) the matrix L is the sum of two terms: 
 
 LLL δ+=

0
        (3.10) 

 
where 
 
 ( ) ( ) ( ) ( )∫ ∫

Ω Ω

×∇⋅⋅×∇=
f f

j
ee

kkj
'dd''|ˆ 000

rrrNrrGrNL µ   (3.11) 

 ( ) ( ) ( ) ( )∫ ∫
Ω Ω

×∇⋅⋅×∇=
f f

j
ee

kkj
'dd''|ˆ 0 rrrNrrGrNL δµδ .  (3.12) 

 
The computation of Lδ  can be carried out by standard numerical integration 

techniques (the kernel eeGδ  is non-singular), whereas the computation of 
0

L  

requires volume and surface integrals (on fΩ∂ ) with kernel g0 (see appendix C): 
 
 SV

000
LLL +=        (3.13) 

 ( ) ( ) ( ) ( )∫ ∫
Ω Ω

×∇⋅×∇=
f f

jkkj

V g 'dd''|000
rrrNrrrNL µ   (3.14) 
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f f
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(3.15) 
 
Notice that the computation of the singular integral involved in (3.14) and (3.15) 
can be performed by noting that: 
 

 ( )
'4

1
2

'
sinc

4
'| 2/'

0 rr

rr
rr rr

−
+







 −
= −

ππ

k
e

jk
g jk .   (3.16) 

 

where ( ) ( )
x

x
x

sin
ˆsinc = . 
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The first term in (3.16) corresponds to a non-singular kernel and its integration 
can be carried out by standard numerical integration techniques, whereas the 
second term correspond to the static scalar Green’s function and its integration 
can be carried out as showed in [8]. 
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Appendix A: Edge element shape functions 
 
 
In the finite elements approach, the continuum is divided into a finite number of 
parts (elements) with a polyhedral shape; every polyhedral is identified by the 
coordinates of its vertices (the nodes of the discretization). The unknown function 
f(r) is represented in each element by a polynomial approximation in terms of NP 
parameters (the degrees of freedom of the solution) and of given shape functions: 
 

∑
=

=
NPi

ii Naf
,1

)()( rr .       (A.1) 

 
Usually, ai represents the nodal value of f at the i-th node of coordinates ri 
(ai=f(ri)); each shape function Ni (nodal function) is locally based and different 
from zero only in the elements sharing the same node i and NP is the number of 
nodes in the finite elements mesh. In this way, inter-element continuity can be 
assured. 

In the following, we consider linear 8-node isoparametric brick elements. 
We recall that the nodal function Nk associated to the k-th node is continuous, 
piecewise trilinear, with the following properties: 
 

d
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kk

VN

mkN
N

∈=

≠=
=
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      (A.2) 

 
where Vd is the finite element discretization of the domain V. Notice that from 
(A.2) it follows that the nodal functions Nk’s are linearly independent. 
We recall that in this case the l-th element is the image of the cube [-1 1]×[-1 
1]×[-1 1] under the mapping M (see Fig. 1) defined by: 
 

∑
∈

=
lIk

kk xNx ),,( ζηξ  

∑
∈

=
lIk

kk yNy ),,( ζηξ        (A.3) 

∑
∈

=
lIk

kk zNz ),,( ζηξ  

 
where x,y,z are the global Cartesian co-ordinates of a point Q corresponding to the 
point Θ of local ζηξ ,,  co-ordinates under the mapping M, Il is the set of (eight) 
nodes of the l-th element, and xk,yk,zk are the global coordinates of the k-th node. 
Nk represents the scalar shape function associated with the k-th node1: 
 

                                                 
1 Notice that we use the same symbol for the shape function in the local ),,( ζηξ , local (rk, sk, tk) 
and global (x,y,z) co-ordinate systems. 
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kkkkkkk tsrN =+++= )1)(1)(1(
8
1),,( ζζηηξξζηξ    (A.4) 

where 

)1(
2
1),1(

2
1),1(

2
1

kkkkkk tsr ζζηηξξ +=+=+=    (A.5) 

 
In this way, the k-th node has local co-ordinates rk=sk=tk=1 in the rk, sk, tk local 
system of co-ordinates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A.1. The mapping M transforms the cube into the hexahedron. The local co-ordinates of nodes 
1 and 7 are (-1,-1,-1) and (1,1,1), respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A.2. The degrees of freedom in the edge elements are associated with the oriented edges of 
the finite elements mesh 
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Fig. A.3. The (local) numbering scheme for the faces. 

 
The degrees of freedom of the edge elements are associated with the 

tangential components along the edges of the elements of a the vector field to be 
represented (see fig. 2) [3]: 

 

∑
=

=
Ee

eeU
,1

NU         (A.6) 

 
The shape function associated with the edge e={i, j}, connecting the i-th and j-th 
nodes along ξ is1 [4]: 
 

eeeeee rts ∇=∇++= ξζζηη )1)(1(
8
1N     (A.7) 

 
where eη and eζ , equal to 1± , are the local co-ordinates of the edge e and re, se, te 
is the local frame where the edge e is described as se=te=1, ]1,0[∈er . The shape 
functions for edges running along η  and ζ  are obtained by cyclic permutations 
while ee NN −='  when e’={j, i}. 
We notice that: 
§ The line integral of Ne along the edge e (from node i to node j) is one: 

1d
},{

=⋅∫
ji

e lN        (A.8) 

§ The line integral of Ne is zero along any other edge },{},{ jikl ≠  and 
},{},{ jilk ≠ : 

                                                 
1 The ordered pair {i, j} represents the oriented edge of the finite elements mesh directed from 
node i to node j. 
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0d
},{

=⋅∫
kl

e lN        (A.9) 

§ The tangential components of Ne are continuous across the face of 
adjacent elements since the scalar functions Nk are continuous. 

§ The normal components of Ne are not necessarily continuous. 
§ Ne and ∇Nk belong to the same functional space: the gradient of a nodal 

shape function is given by a linear combination of the edge shape 
functions having in common that node: 

 

∑
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=∇
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eekk GN
,1

N       (A.10) 

where E is the number of edges of the mesh and G is the E×NP incidence 
matrix defined by: 
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imjie
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Similarly, a set of shape functions Sf associated with the faces of the elements can 
be introduced. In this case, the flux of Sf is one across face f and zero across any 
other faces. The normal component of Sf is continuous across the faces of adjacent 
elements, whereas the tangential component is not necessarily continuous. 
Moreover, it can be verified that the curl of an edge shape function is a linear 
combination of face shape functions: 
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,1
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where F is the number of faces of the mesh and C is the F×E incidence matrix 
defined by1: 
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Notice that from (A.8) and (A.9) it follows that the edge element shape functions 
Ne’s are linearly independent. Similarly, the face element shape function Sf‘s are 
linearly independent. 
Moreover, the matrix G represents the discretization of the gradient operator 
whereas the matrix C the discretization of the curl operator: 
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ee
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( ) ( ) ( )∑∑
==

=×∇⇒=
Ff

ff
Ee

eeb
,1,1

SbCUrNrU    (A.15) 

 

                                                 
1 The ordered sequence {m,n,l,i} represents the face having m,n,l,i as nodes. Notice that any 
circular permutation represents the same face. 
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where a and b stand for the column vectors of numerical coefficients ak and bk. 
 
The curl of Ne has the following expression: 
 

eeee rts ∇×∇=×∇ )(N        (A.16) 
 
The explicit expression for the gradient is obtained by the usual rules of partial 
differentiation, using the Jacobian matrix J of the transformation M: 
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( ) [ ]211332
1

det
1

vvvvvv
J

J ×××=−    (A.19) 

 
and the determinant of the Jacobian matrix is: 

 
( ) 132det vvvJ ⋅×=        (A.20) 

 
Cyclic permutations give the other gradients. 
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Appendix B: Tree-Cotree Decomposition 
 
Solenoidality of the electric current dipole density P can be assured by 
introducing a vector potential U, defined by 
 

UP ×∇=         (B.1) 
 
To assure the unicity of U, an additional condition must be imposed. We prescribe 
the component of the vector potential along the direction determined by an 
arbitrarily chosen non-vanishing vector field w which does not possess closed 
field lines. The role played by this gauge condition is to eliminate all the 
irrotational fields from the functional space in which we search for the vector 
potentials. In other words, the gauge condition should constrain the null space of 
the discrete curl operator to be void [5]. 

We consider a simply connected region Vd and we express U and P using 
edge elements and face elements, respectively: 

 
( ) ( )∑

=

=
Ee

eeU
,1

rNrU        (B.2) 

 
and 

 
( ) ( )∑

=

=
Ff

ffP
,1

rSrP        (B.3) 

 
where Ne’s are edge element shape functions and Sf’s are face elements shape 
functions; consequently Ue and Pf are the degrees of freedom associated with the 
edge e and the face f. 
From (B.1) and (B.2) we have: 
 

∑
=

×∇=
Ee

eeU
,1

NP        (B.4) 

and hence 
 

∑ ∑
= =

=
Ee Ff

fefeUC
,1 ,1

SP        (B.5) 

 
Equation (B.5) shows that the coefficients of (B.2) and (B.3) are linearly related: 
 

puC =         (B.6) 
 
where p  and u  are the column vectors of coefficients Pf and Ue, respectively. 

The relationship (B.6) can be regarded as a linear system where u  and p  
play the roles of unknowns and right hand side, respectively. 
The existence of a solution for system (B.6) is subject to the compatibility 
condition, which requires that p  correspond to a solenoidal vector field. If the 
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system is compatible, the solution is not unique. In fact, from (A.10) and (A.12) it 
turns out that: 
 

( )∑
=

=∇×∇=
Ff

ffkkN
,1

0 SGC      (B.7) 

thus1, 
 

0GC =         (B.8) 
 
because the shape functions fS  are linearly independent (see Appendix A). From 

(B.8) it follows that adding any linear combination of columns of G  to u  is still a 

solution of (B.6); in fact, the columns of G  yield irrotational vector potential (and 
zero dipole densities) [3]. Thus, in this case, imposing the gauge condition is 
equivalent to the problem of assuring uniqueness for system (B.6). 

Let us consider the oriented graph formed by the nodes and oriented edges 
of the edge element mesh. G  and C  are the edge-node and face-edge incidence 

matrices. From graph theory, the rank of the E×NP matrix G  is NP-1 while the 

rank of the F×E matrix C  is E−NP+1. The uniqueness of the solution of (B.6) is 

guaranteed if U in (B.2) is represented by E−NP+1 degrees of freedom. 
To select the proper degrees of freedom, we notice that the uniqueness of the 
solution of (B.6) means that 0U ≠×∇  when at least one of the E−NP+1 degrees 
of freedom is different from zero. Let us decompose the graph into an arbitrary 
tree (NP-1 edges) and cotree (the residual E-NP+1 edges) (the algorithm to 
identify all possible trees of a graph is presented in [6]). Then, assuming Ue=0 
when e is an edge of the tree, we notice that 0U ≠×∇  if at least one degree of 
freedom related to a cotree edge is different from zero. In fact, each edge of the 
cotree closes a single independent loop eγ  with the edges of the tree and the 
circulation of U along eγ  is equal to ±Ue ( eγ  does not include cotree edges apart 
from edge e). Therefore, the E−NP+1 degrees of freedom associated to the edges 
of the cotree lead to a reduced set of equations that, if compatible, admit a unique 
solution [5, 7, 8]. 

For the sake of completeness, it is worth noting that the NP-1 degrees of 
freedom associated to the tree edges can be used to represent gradient vector 
fields. In fact, once the degrees of freedom of the edges of the tree have been 
assigned, for any cotree edge e we choose Ue so that the circulation of U along eγ  
is equal to zero (since the circulation of U along eγ  involves only the cotree edge 
e, we find that Ue depends linearly on the degrees of freedom associated to the 
tree edges). Therefore, (B.2) gives a vector field U that is irrotational. 

                                                 
1 Notice that (B.8) is the discrete equivalent of ∇×∇f=0. 
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Appendix C: Integration of the hyper-singular term 
 
Here equation (3.15) is proven. 
First we notice that the hyper-singular term ( )'|0

2 rrgk ∇∇−  is a distribution (see 
[9]). This distribution acts on vector fields in the following way: 
 

 ( ) ( ) ( ) ( )[ ]{ }rrwrrrwrr d'|1:'|1
0202 ∫⋅∇∇→∇∇ g

k
g

k
  (C.1) 

 
The definition of the elements of S

0L  is: 
 

( ) ( ) ( ) ( )∫ ∫
Ω Ω 






















⋅⋅∇∇⋅=

f f

jiij
S g

k
rrrPrrrPL d'd''|02

0
0

µ
.  (C.2) 

 
Then, taking into account that 0=⋅∇ iP  and applying the divergence theorem 
w.r.t. the outer most integral, it turns out that: 
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  (C.3) 

 
where ( )rn̂  stands for the outward normal at point r of fΩ . 
Then, we notice that1 
 

( ) ( )[ ] ( ) ( )[ ]''|'''| 00 rPrrrPrr jj gg ⋅−∇=⋅∇

 

    (C.4) 
 
as follows by taking into account the solenoidality of jP  and that g0 is a function 
of r-r’. Finally, replacing (C.4) in (C.3) and applying the divergence theorem 
w.r.t. the inner most integral we get: 

                                                 
1 As usual, the symbol ∇ refers to the spatial co-ordinates r while ∇’ refers to the spatial co-
ordinates r’. 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫
Ω∂ Ω∂

⋅⋅−=
f f

SSg
k jiij

S rrrPrnrrrPrnL d'd''ˆ'|ˆ 02
0

0

µ
 (C.5) 



 Performance Report UTC/AFML (Project # 404-25-24) - Version 27.9.2002 -  page 57 

 

Appendix D: Programming the finite element code 
 
 
List of symbols 
 

CE
mI   set of indices of the cotree edges lying on the boundary of element 

m 
CE

mI ~
~   set of indices of the cotree edges lying on the boundary surface m~  
Nbf  no. of boundary faces of the mesh (boundary faces are numbered 

fro 1 to Nbf) 
NCE no. of cotree edges of the mesh (the cotree edges are numbered 

from 1 to NCE) 
Ne no. of elements of the mesh (the elements are numbered from 1 to 

Ne) 
Nedges  no. of edges of the mesh (the edges are numbered from 1 to Nedges) 
Np  no. of nodes of the mesh (the nodes are numbered from 1 to Np) 
NG  no. of Gauss points per element 

GN~   no. of Gauss points per face 
m

nr   n-th Gauss point in the element m 
m

n

~~r   n-th Gauss point on face m~  

m~Σ   surface of the m~ -th boundary face of the mesh 
τm  three dimensional domain occupied by element m 
vol(τm)  volume of element m 
wn Gauss weight at the n-th point of the master element [-1, 1]×[-1, 

1]×[-1, 1] 
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Assembling V, R, L, Lδ , 
0

L  and S

0
L  

 
The integrals appearing in the numerical formulation can be written in the 
following way: 
 

 ( )( ) ∑
=

=
eN

m
kmk

i

1
,νV         

  (1) 

 ( ) ∑
=

=
eN

m
jkmkj

1
,,ρR         

  (2) 

 ( ) ∑∑
= =

=
e eN

m

N

l
jklmkj

1 1
,,,αL         

  (3) 
 
where Ne is the number of elements of the mesh, 
 

( ) ( )( )∫ ⋅×∇=
m

i
kkm

τ

ν rrErN dˆ,        

  (4) 

( ) ( )∫ ×∇⋅×∇
−

=
m

jk
f

jkm
τσσ

ρ rrNrN d
1

ˆ
0

,,      

  (5) 
( ) ( ) ( )∫ ∫ ×∇⋅⋅×∇=

m l

j
ee

kjklm
τ τ

µα rrrNrrGrN d'd''|ˆ 0,,, .   

  (6) 
 
and τm is the three dimensional domain of the m-th element of the finite element 
mesh. 
 
 
The standard procedure for assembling V, R and L, assuming that the non-
singular integrals (4) and (5) are computed by the Gauss quadrature method, is 
given by the following algorithms (NG is the number of Gauus points per element, 

CE
mI  is the set of indices of the cotree edges lying on the boundary of element m): 

 
Procedure 1 :  compute and store the values of the shape functions assumed in the 

Gauss points for any element 
 

for m=1, …, Ne 
for CE

mIk ∈  
for n=1, …,NG 

set SHPF(m,k,n)= ( )m
nk rN×∇ 1; 

                                                 
1 For given m, k and n, SHPF(m,k,n) is a three component vector. 
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Procedure 2 : compute V 
 

set V=0; 
for m=1, …, Ne 

for n=1, …, NG 
for CE

mIk ∈  
( ) ( ) ( ) ( )mn

m
n

i
kmn volwnkmSHPF τν ,,,, ⋅= rE ; 

( )( ) ( )( ) kmnk
i

k
i

,,ν+= VV ; 
Procedure 3 : compute R1 
 

set R=0; 
for m=1, …, Ne 

for n=1, …, NG 
for CE

mIk ∈  

for CE
mIj ∈  and kj ≤  

( ) ( ) ( ) ;8/,,,,,,, mnjkmn volwnkmSHPFnkmSHPF τρ ⋅=

( ) ( ) jkmnkjkj ,,,ρ+= RR ; 

 set ( ) ( )kjjk RR =  for kj < ; 

 set RR
0

1
σσ −

=
f

; 

 
 
Procedure 4 : compute L 2 
 

set L=0; 
for m=1, …, Ne 

for l=1, …, Ne 
compute and store any quantity that depends only on m and 

l3; 
for CE

mIk ∈  

 for CE
lIj∈  and kj ≤  

call compute jklm ,,,α ; 

( ) ( ) jklmkjkj ,,,α+= LL ; 

 set ( ) ( )kjjk LL =  for kj ≤ ; 
 
Notice that procedure 4 is valid for computing Lδ  and 

0
L  also. In the first case 

jklm ,,,α  has to be replaced by jklm ,,,δα  defined as 

                                                 
1 The matrix R is sparse. 
2 As example, compute and store ( )l

i
m
i

ee
'| rrG  for i,i’=1, …,NG 

3 The algorithm for computing jklm ,,,α  is left to the reader (see [8] for the case of static scalar 

Green function). 
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( ) ( ) ( )∫ ∫ ×∇⋅⋅×∇=

m l

j
ee

kjklm
τ τ

δµδα rrrNrrGrN d'd''|ˆ 0,,, ,   

  (7) 
 
whereas in the second case jklm ,,,α  has to be replaced by 0

,,, jklmα  defined as 

 ( ) ( ) ( )∫ ∫ ×∇⋅×∇=
m l

jkjklm g
τ τ

µα rrrNrrrN d'd''|ˆ 00
0

,,,     

  (8) 
 
The numerical computation of jklm ,,,δα  can be carried out by Gauss quadrature 

rule, whereas the numerical computation of 0
,,, jklmα  can be carried out by taking 

into account (3.16). Specifically, the term arising from 






 −−

2

'
sinc

4
2/' rrrr k

e
jk jk

π
 

can be computed by the Gauss quadrature rule, whereas the term arising from 

'4
1

rr −π
 can be computed by the approach proposed in [8]. 

 
 
Finally, the surface integral (3.15) can be written as: 

( ) ∑∑
= =

=
bf bfN

m

N

l
jklmkj

S

1~ 1~ ,,~,~0 βL         

  (9) 
 
where Nbf is the number of boundary faces of the mesh, 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫
Σ Σ

×∇⋅×∇⋅−=
m l

SSg
k jkjklm

~ ~

d'd''ˆ'|ˆˆ 02
0

,,~,~ rrrNrnrrrNrn
µ

β  

  (10) 
 
and Σm is the m-th boundary face. The algorithm for computing S

0
L  is ( CE

mI ~
~  is the 

set of indices of cotree edges lying on the boundary surface m~ ): 
 
Procedure 5 : compute S

0
L 1 

 
set S

0
L =0; 

compute and store the values of ( ) ( )rNrn k×∇⋅ˆ  evaluated at the Gauss 
points of any boundary face; 
for bf, N, m …=1~  

                                                 
1 The algorithm for computing 

jklm ,,
~

,~β  is left to the reader (for instance, combine (3.16) with (18) 

and (19) in [8]). 
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for bf, N, l …=1~  
compute and store any quantity that depends only on m~  

and l
~ 1; 

for CE
mIk ~

~∈  

 for CE
l

Ij ~
~∈  and kj ≤  

call compute 
jklm ,,

~
,~β ; 

( ) ( ) jklmkj

S

kj

S
,,~,~00

β+= LL ; 

 set ( ) ( )
kj

S

jk

S

00
LL =  for kj ≤ ; 

 
We notice that the volume and surface integrals are carried out on the master 
element [-1, 1]×[-1, 1]×[-1, 1] or the master face [-1, 1]×[-1, 1], respectively. The 
Gauss weight refer to the master element or face; the Gauss points for a generic 
element or face are obtained as image under the transformation M of the Gauss 
points for the master element and face, respectively. 

                                                 
1 As example, compute and store ( )l

i
m

ig
~

'

~

0
~|~ rr  for i,i’=1, …, GN

~
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The incidence matrices and other relevant geometrical and topological data 
 
Input 

x(i, 1:3), i=1:Np   coordinates of the i-th nodal point 
ix(i, j), i=1:8, j=1:Ne label of the i-th node of the j-th 

element (see fig 2) 
ix(9, j), j=1: Ne label of the material properties of the 

j-th element 
 
 
Output 

ixb(i, j), i =1:4, j=1:Nbf label of the i-th node of the j-th 
boundary face 

ltact(i, j), i=1:12, j=1:Ne label of the i-th cotree edge of the j-
th element. ltact(i,j) is zero if the i-th 
edge belongs to the tree. 

ltact_bou(i, j), i=1:4, j=1:Nbf label of the i-th cotree edge of the j-
th boundary face. ltact_bou(i, j) is 
zero if the i-th edge belongs to the 
tree. 

inc(1, j), inc(2, j), j=1:Nedges labels of the two nodes identifying 
the j-th edge 

ncoalb(i), i=1:NCE label of the i-th edge of the co-tree 
latel(i, j), i =1:12, j=1:Ne label of the i-th edge of the j-th 

element (see fig 2) 
ielface(j), j=1:Nbf label of the element of the j-th 

boundary face 
indface(i, j), i=1:4, j=1: Nbf (local) label of the i-th edge of the j-

th boundary face (see fig. 2) 
 
 
Procedure 1 :  find boundary faces (Nbf, ixb, ielface and indface) 
 
j=0; 
for iel1=1, …, Ne 

for each face jf1 of element iel1 
  set ind=false; 

while  ind=false 
 for iel2= iel1+1, …, Ne 

for each face jf2 of element iel2 
   if jf1=jf2 set ind=true;1 
if ind=false 
 j=j+1; 

insert the nodes of face jf1 in the list ixb(1:4, j); 
insert iel1 in the list ielface(j); 
insert j f1 in the list indface(1:4, j); 

Nbf=j; 

                                                 
1 jf1=jf2 means that the set of nodes of face jf1 is equal to the set of nodes of face jf2. 
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Procedure 2 :  compute the incidence matrix (Nedges, inc) 
 
lat=0; 
for iel=1, …, Ne 

for each edge i (i=1, …, 12) of element iel 
  set ind=false; 

 if edge i is already in inc1 
then set latel(i, iel)=position where edge i occurs in inc; 

  else 
   lat=lat+1; 

  insert the label of nodes corresponding to edge i in inc(:, 
lat); 

latel(i, iel)=lat; 
Nedges=lat; 
 
 
Procedure 3 :  compute ltact2 
 
for each element iel 

for each edge i (i=1, …, 12) of element iel 
lat=latel(i,iel); 
if lat belong to the co-tree then set ltact(i, iel)=lat; 
else ltact(i, iel)=0; 

 
 
Procedure 4 :  compute ltact_bou 
 
for each boundary face jf 

for each edge i (i=1, …, 4) of the face jf  
iel=ielface(jf); 
ilat=indface(i,jf); 
lat=ltact(ilat,iel); 
ltact_bou(i,jf)=lat; 

 

                                                 
1 This test consists in searching the column of inc  containing the nodes related to edge i. 
2 Notice that the procedure for the tree-cotree decomposition is described in [6]. The input of this 
procedure is the incidence matrix inc and the output is the list of co-tree edges ncoalb. 
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